Temporal Expression Changes During Differentiation of Neural Stem Cells Derived From Mouse Embryonic Stem Cell

Joon-Ik Ahn,¹ Ki-Hwan Lee,¹ Dong-Mi Shin,¹ Jae-Won Shim,¹ Chang-mee Kim,² Hyun Kim,² Sang-Hun Lee,¹ and Yong-Sung Lee¹*

¹Department of Biochemistry, College of Medicine, Hanyang University, Seoul 133-791, South Korea ²Department of Anatomy, College of Medicine, Korea University, Seoul 136-705, South Korea

Abstract Temporal analysis in gene expression during differentiation of neural stem cells (NSCs) was performed by using in-house microarrays composed of 10,368 genes. The changes in mRNA level were measured during differentiation day 1, 2, 3, 6, 12, and 15. Out of 10,368 genes analyzed, 259 genes were up-regulated or down-regulated by 2-fold or more at least at one time-point during differentiation, and were classified into six clusters based on their expression patterns by K-means clustering. Clusters characterized by gradual increase have large numbers of genes involved in transport and cell adhesion; those which showed gradual decrease have much of genes in nucleic acid metabolism, cell cycle, transcription factor, and RNA processing. In situ hybridization (ISH) validated microarray data and it also showed that Fox M1, cyclin D2, and CDK4 were highly expressed in CNS germinal zones and ectonucleotide pyrophosphatase/ phosphodiesterase 2 (Enpp2) was highly expressed in choroid plexus where stem/progenitor cells are possibly located. Together, this clustering analysis of expression patterns of functionally classified genes may give insight into understanding of CNS development and mechanisms of NSCs proliferation and differentiation. J. Cell. Biochem. 93: 563–578, 2004. © 2004 Wiley-Liss, Inc.

Key words: microarray; proliferation; in situ hybridization; germinal zone; choroid plexus

Neural stem cells (NSCs) are multipotent and self-renewing cell population able to generate the three major central nervous system (CNS) lineages neurons, astrocytes, and oligodendrocytes. Therefore, NSCs is thought of as a reservoir with the potential to become any one of the thousands of cell types within the CNS [McKay, 1997; Ross et al., 2003].

Analyses of a variety of mammalian model systems have identified helix-loop-helix (HLH) transcription factors as a regulator of early differentiation of NSCs. The different classes

E-mail: yongsung@hanyang.ac.kr

Received 10 February 2004; Accepted 20 April 2004 DOI 10.1002/jcb.20168

© 2004 Wiley-Liss, Inc.

of HLH factors cross-regulate one another to mediate the effect of several signaling systems on a large number of target genes. HLH transcription factors participate at different stages of NSC differentiation, such as formation of progenitor cells, initiation of differentiation, cell fate determination, neurite outgrowth, and synaptogenesis, and the timing of differentiation is regulated by the balance of these factors [Morrison, 2001; Ross et al., 2003].

The signaling molecules that regulate the transition of NSCs from proliferation to differentiation are beginning to be identified, with several growth factors, including basic fibroblast growth factor, epidermal growth factor, brain-derived neurotrophic factor, and notch ligands [Vescovi et al., 1993; Zigova et al., 1998; Benraiss et al., 2001; Caldwell et al., 2001]. In addition to these factors on the stem cell proliferation and differentiation, identification of other factors will advance the understanding of CNS development and the potential for the use of stem cells as therapeutic agents [Karsten et al., 2003].

Grant sponsor: Korean Ministry of Health & Welfare; Grant number: 01-PJ10-PG8-01EC01-0023.

^{*}Correspondence to: Dr. Yong-Sung Lee, Department of Biochemistry, College of Medicine, Hanyang University, Seoul 133-791, South Korea.

To identify regulatory genes that are involved in NSCs proliferation and differentiation, we have performed in-house-made cDNA microarray, which allows simultaneous assessment of the expression of potentially thousands of genes. Recently, some microarray analyses were performed to investigate the molecular mechanism underlying NSC proliferation and pluripotency [Geschwind et al., 2001; Luo et al., 2002]. However, most genes identified in these microarrays do not overlap with each other. Elucidation of common genetic factor in various stem cell populations is hampered by different experimental design and analysis. To highlight conserved genes expressed during differentiation in NSCs, we compared list of genes identified in this embryonic stem cell (ES)derived NSCs population with genes identified in other stem cell populations, such as primary neural progenitor cells [Karsten et al., 2003].

MATERIALS AND METHODS

ES Cell-Derived Neural Stem Cells and Differentiation

The NSCs were generated through five-stage method as described [Lee et al., 2000]. Nestinpositive cells (NSCs, stage 4) were expanded for 4 days. The medium was changed every 2 days. Differentiation (stage 5) was induced by removal of bFGF. The cells were incubated under differentiation conditions for 1, 2, 3, 6, 12, and 15 days. The total RNA of each time-point was extracted using Tri-Reagent (MRC, Inc., Cincinnati, OH) according to the manufacturer's instructions.

Microarray Fabrication and Hybridization

A total of 10,368 cDNA clones were spotted onto SuperAldehyde slides (Telechem, Sunnyvale, CA) using a MicroGrid TAS arrayer (Genomic solutions, Huntingdon, United Kingdom) as previously described [Lee et al., 2002]. The microarray consisted of 6,531 clones from the National Institute of Aging (NIA), 1,243 clones from the Brain Molecular Anatomy Project (BMAP), 2,060 clones from Incyte, and houskeeping genes and yeast DNA as negative controls.

Probes were made from 2 μ g of total RNA from NSCs (stage 4) for control and 2 μ g of RNA from each differentiated cells RNA (stages 5), using a dendrimer labeling kit (3DNA 350RP; Genisphere, Hatfield, PA). For each experiment, at least four replicates were performed, and two of these were repeated with the fluorophores reversed to eliminate false-positive results.

Scanning and Data Analysis

The two fluorescent images from each slide were scanned separately using a GMS 418 scanner (Affymetrix, Santa Clara, CA). The images were analyzed using ImaGene 4.2 (Biodiscovery, El Segundo, CA) and MAAS (Gaiagene, Seoul, Korea) software. Cy3:Cy5 intensity ratios from each gene were calculated and subsequently normalized with nonlinear lowess normalization. To filter out unreliable data, spots with signal-to-noise ratios below 2 were flagged. The non-flagged genes in at least three out of four experiments were used for further analysis. We took the median value from the gene expression ratio of each of four independent experiments and selected genes whose expression level differed from their mean expression level by at least 2-fold at one or more differentiation time. K-means clustering was applied to genes using the Euclidean distance as a similarity measurement, as implemented in the software program Genesis (http://genome. tugraz.at, Sturn et al. [2002]). Genes showing more than a 2-fold difference in expression level were divided into categories according to their molecular function using the classification scheme in Gene OntologyTM. To examine statistical significance for frequencies of genes of each functional group in each cluster, two-sided Fisher's exact test was performed.

Immunocytochemistry

The cells were grown on polyornithine $(15 \,\mu g/$ ml, Sigma, St. Louis, MO)/fibronectin (1 µg/ml, Sigma) coated coverslips and fixed with 4%paraformaldehyde/0.15% picric acid in 0.1% bovine serum albumin (BSA)/phosphate-buffered saline (PBS). Subsequently, the cells were washed three-times with BSA/PBS and permeabilized with Triton X-100/PBS. The cells were incubated for 12 h at 4°C with polyclonal nestin antibodies (1:50) (Matha Marvin and Ron McKay, National Institute of Health, Bethesda, MD), polyclonal neuron-specific class III β -tubulin (Tuj1) antibodies (1:2,000) (Babco, Richmond, CA) and polyclonal glial fibrillary acidic protein (GFAP) antibodies (1:400) (DAKO, Glostrup, Denmark). For detection of primary antibodies, fluorescence labeled (FITC or Cy3) secondary antibodies (Jackson Immunoresearch Laboratories, West Grove, PA) were used according to the specifications of the manufacturer. Cells were mounted in Vectashield containing 4', 6-diamidino-2-phenylindole (DAPI; Vector Laboratories, Burlingame, CA) and analyzed under an epifluorescence microscope (Nikon, Tokyo, Japan).

Semi-Quantitative and Real-Time Quantitative RT-PCR

For semi-quantitative and real-time quantitative RT-PCR, beta-actin was used as an internal control with the following primer sets; 5'-ctt tat ggt gtg gtc gca ga-3' and 5'-tca ggg tag tca gcc atg tg-3'. For each sample from each timepoint, the same total RNA used for cDNA microarray hybridization was reverse-transcribed using 1 µM oligo (dT) primer with Superscript II reverse transcriptase (Invitrogen, Carlsbad, CA). The thermal profiles consisted of $95^{\circ}C$ for 5 min for initial denaturing, followed by 25- $30 \text{ cycles of } 95^{\circ}\text{C} \text{ for } 30 \text{ s}, 58^{\circ}\text{C} \text{ for } 30 \text{ s}, \text{ and } 72^{\circ}\text{C}$ for 30 s. All RT-PCR reactions were repeated at least three-times. Triplicate real-time RT-PCR experiments were performed using iCycler iQ system (Bio-Rad, Hercules, CA) and the SYBR Green I dye (Molecular probes, Eugene, OR). A melting curve was obtained for each PCR product after each run to confirm that the signal corresponded to a unique amplicon of the product size. The following primers were used: 5'-ggagtgtcgcttagaggtgc-3' and 5'-tccagaaagccaagagaagc-3' for nestin; 5'-tgtcagaggagcccgaggtc-3' and 5'-ccaagagcagcccatcaaag-3' for tyrosine hydroxylase (TH); 5'-aaggtagccgtgtgtgacate-3' and 5'-accaggtcattcatgttgete-3' for Tuj1; 5'-ccaaactggctgatgtctacc-3' and 5'-gcttcatgtgcctcctgtcta-3' for GFAP; 5'-tccctacataacgggagcag-3' and 5'-aactcaggccaagcgataga-3' for insulin-like growth factor 2 (Igf2); 5'-ttttcatcttggcagetgtg-3' and 5'-acactecactgccattetec-3' for pleiotrophin; 5'-ttccccagaagcgaaatatg-3' and 5'-tgaccccattcctttctgac-3' for ectonucleotide pyrophosphatase/phosphodiesterase 2 (Enpp2); 5'gatgatttccgagggagaca-3' and 5'-catgaggaatgtcagccaga-3' for N-myc downstream regulated 2 (Ndr2); 5'-gaggaaacagcaccttcagc-3' and 5'-aggcaatgtctccttgatgg-3' for forkhead box M1 (FoxM1); 5'-ggaagagactgttggaagagga-3'and 5'ctgataagcccaggctagaaga-3' for thymopoietin.

In Situ Hybridization

ISH were performed on E13.5, E18.5, P0, P7, and P14 BL6 mouse brains and embryos sec-

tioned at 12 µm. Sections were thaw-mounted onto gelatin-coated slides, fixed in 4% paraformaldehyde, treated with 0.25% acetic anhydride in 0.1 M triethanolamine/0.9% NaCl (pH 8.0), dehydrated and defatted in ethanol and chloroform, and finally air-dried. Transcription of antisense probes was carried out using the Riboprobe (Promega, Madison, WI) in the presence of α -³⁵S-UTP (Amersham, Buckinghamshire, England). Sections were hybridized overnight at 53°C with 5×10^5 cpm of labeled probe per slide, treated with RNase A (20 mg/ml, Boehringer-Mannheim, Mannheim, Germany) for 30 min at 25°C, washed sequentially for 60 min in $2 \times$ SSC (1× SSC is 0.15 M sodium chloride, 0.015 M sodium citrate, pH 7.2) at 50°C, 60 min in $0.2 \times$ SSC at 55°C, and 60 min in 0.2× SSC at 60 × $^{\circ}$ C, briefly rinsed in a graded series of ethanol containing 0.3 M ammonium acetate and dried. Hybridized radioactivity was visualized after 6 days' exposure using-max film (Amersham, Arlington Heights, IL).

RESULTS

Generation and Differentiation of Neural Stem Cells

To generate NSCs, we adopted lineage selection (five-stage) method that leads to the efficient selection and proliferation of NSCs from ES cell. We performed immunocytochemistry to evaluate generation and differentiation of NSCs. As shown in Figure 1A, a majority of cells in the stage 4 were labeled with nestin, which is commonly used marker for NSCs. After 6 day of bFGF removal, differentiated cells were immunostained with Tuj1 and GFAP which is specific marker for neurons and astrocytes, respectively. Furthermore, morphological changes were observed. The NSCs began extension of neurite-like structures at day 2 after removal bFGF. The number and length of neurite-like structures were increased as the differentiation time of cultures evolves (Fig. 1B). We also performed semiguantitative RT-PCR analysis for neuronal and glial phenotypic genes (Fig. 1C). Nestin showed little expression since differentiation day 12. Tuj1 and GFAP were gradually increased during differentiation. Additionally, TH was also gradually expressed, because our culture method generates dopaminergic neurons in high yield [Lee et al., 2000].

Fig. 1. Differentiation of neural stem cells (NSCs). **A**: Immunocytochemistry for NSCs, neurons, and astrocytes. Most cells (DAPI nuclear staining, red) at stage 4 were immunostained with the intermediate filament nestin (green) which is marker of NSCs. Differentiation of NSCs was induced by withdrawal of bFGF. After 6 day of bFGF removal, differentiated cells were immunostained with Tuj1 (green) and GFAP (red). Scale bar, 20 μm. **B**: Phase-contrast images illustrate the morphological

Identification of Significantly Expressed Genes

To examine the temporal changes in gene expression during differentiation comprehensively, we performed gene expression profiling. Total RNA derived from differentiated cell at 1, 2, 3, 6, 12, or 15 days and the control (NSCs) were subjected to cDNA synthesis. Both cDNAs were subsequently mixed and hybridized with a microarray. After hybridization, specific Cy3 and Cy5 dye labeling for each cDNA (NSCs vs. differentiating cells) were carried out in chips. The flagged genes at more than one time-point were not subjected to further analysis (K-means clustering). The data set of differentially expressed genes including missing value is available at; http://neurogenomics.hanyang.ac.kr. Out of the 10,368 genes represented on the chip, 259 genes were up- or down-regulated 2-fold or more at least at one time-point during the differentiation (Table I).

To determine the validity of results obtained by the microarray analysis, six randomly selected genes (*Igf2*, *pleiotrophin*, *thymopoietin*,

changes during differentiation of NSCs. The neurite-like structures were first detected at differentiation day 2. Arrow indicates the neurite-like structures at day 2. **C**: The generation and differentiation of NSCs were further validated by RT-PCR analysis for phenotypic genes (Nestin, Tuj1, GFAP, and TH). [Color figure can be viewed in the online issue, which is available at www.interscience.wiley.com.]

Enpp2, *FoxM1*, *Ndr2*) were subjected to realtime quantitative PCR analysis. These expression pattern observed by PCR showed a good concordance with the pattern assayed by microarray (Fig. 2).

Temporal Cluster Analysis

To characterize patterns of transcripts expression during the time course of differentiation, K-means clustering was performed on the 259 genes, and these genes were classified into six clusters (Fig. 3). The temporal cluster analysis revealed that four clusters of transcripts whose the expression was either upregulated (cluster A, 26 genes and B, 75 genes) or down-regulated (cluster D, 71 genes and E, 39 genes). Cluster F (45 genes) showed gradual increase by day 6 and slight decrease on day 15. Cluster C represented only three genes (RIKEN cDNA 1700011103 gene, exportin 4, BRF2) that were markedly decreased by day 3, but returned to undifferentiated level on day 12 and increased at day 15.

Result of Karsten	et al. [2003]	Up-regulated in DC	Up-regulated in DC	Up-regulated in DC Up-regulated in DC	Up-regulated in DC	Up-regulated in DC	Up-regulated in DC
	Title	Insulin-like growth factor 2 Tissue inhibitor of metalloproteinase 2 Cd63 antigen	Ciutathione S-transferase, mu 1 H19 fetal liver mRNA Zinc finger protein 42 Aldolase 3, C isoform ATP-binding cassette, sub-family A (ABC1), member 1	200ue carrier ianury 1, memoer 5 CD9 antigen Prion protein Carboxypeptidase E Gamma-aminobutyric acid receptor, subunit beta 3 ATPase, Na+/K+ transporting, beta 1 polypeptide	Aldolase 1, A Isoform Integral membrane protein 2B Cocaine and amphetamine regulated transcript Membrane-spanning 4-domains, subfamily A, member 6D Serine (or cysteine) proteinase inhibitor, clade A, member 3G Cystatin C Phosphofructokinase, platelet Endothelin receptor type B Glutathione S-transferase, mu 2	Alrtase, Na+/n+ transporting, beta z polypepude CD 81 antigen Metallothionein 1 Amexin A5 <i>RIKEN cDNA 1810020C02</i> gene Deleted in polyposis 1 Amexin A2 Secretogranin III Keratin complex 2, basic, gene 4 Developmental pluripotency associated 5 SPARC-like 1 (mast9, hevin) Bone morphogenetic protein receptor, type 1B	Procedingen, type III, alpha 1 Low density lipoprotein receptor-related protein associated protein 1 protein 1 protein 1 protein 15 F-box only protein 15 Interleakin 6 signal transducer Phospholipase A2, group VII Acid beta glucosidase Mus musculus transcribed sequence Secreted acidic cysteine rich glycoprotein Glutanate delydrogenase Procollagen, type VI, alpha 1
	GenBank	BG073613 AA444490 BG069465	BG086970 BG074103 BG079167 BG080229 AA063753	BG070637 BG072683 W83974 AW060338 BG077733	AA518639 BG085991 AI854310 BG076160 W83447 W78651 AI853802 AI853802 AI844824 AI854824 AI844824 AI85601 BG070501 BC070501	BG075757 BG075757 BG075757 BG077818 AA002439 BG064768 AA0024392 BG064768 AA0024391 AA038826 BG084347 BG074398 BG074398 BG074398 BG074398 BG074398 BG074398 BG076296 BG076296	BG088357 BG088450 AA108928 BG069468 BG069468 BG086434 AA198668 AA198668 BG086434 AA198668 BG086434 AO17674 BG072874 BG072874 BG072874
	15 day	1.325 2.065 1.874	1.603 2.005 1.376 2.179 2.179	2.203 1.664 1.786 1.786 1.182 1.587	1.416 1.401 1.956 1.776 1.776 1.591 1.838 1.535 1.535	2.420 1.786 1.513 1.591 1.591 1.137 1.004 1.137 1.137 1.082 1.082 1.082 1.082 1.082 1.082	1.010 1.161 1.191 1.648 1.730 1.730 1.730 1.730 1.152 1.152 1.101 1.328 1.328
base 2)	12 day	1.691 2.129 1.877	1.767 2.186 1.365 1.190 2.478	2.409 1.600 1.789 1.782 1.397 1.339 1.839	1.410 1.624 1.624 1.549 1.637 2.151 1.637 1.637 1.6565 1.788 1.788	2.2500 1.102 1.1486 1.678 1.678 0.967 0.967 0.464 0.983 0.464 0.464 0.464 0.464 0.464 0.765 1.247	1.123 0.776 0.776 0.871 1.058 0.871 1.085 0.929 0.9291 0.624 1.027 1.520
arithm, l	6 day	$0.461 \\ 0.875 \\ 0.331 \\ 0.331$	$0.494 \\ 0.804 \\ 0.973 \\ 0.604 \\ 0.821 \\ 0.821 \\ 0.821 \\ 0.821 \\ 0.92$	0.125 0.595 0.591 1.044 1.087	$0.494 \\ 0.662 \\ 0.546 \\ 0.264 \\ 0.264 \\ 0.262 \\ 0.864 \\ 0.864 \\ 0.809 \\ 0.809 \\ 0.809 \\ 0.809 \\ 0.809 \\ 0.800 \\ 0.80$	$\begin{array}{c} 0.396\\ 0.396\\ 1.475\\ -0.109\\ 0.611\\ 0.024\\ 0.536\\ -0.041\\ 0.280\\ 0.371\\ 0.371\\ 0.371\\ \end{array}$	$\begin{array}{c} 0.679\\ 0.679\\ 0.551\\ 0.171\\ 0.171\\ -0.041\\ 0.077\\ 0.373\\ 0.017\\ 0.678\\ 0.347\\ 0.347\end{array}$
ange (log	3 day	-0.089 0.521 0.148	0.199 0.207 0.285 0.853 0.640	$\begin{array}{c} -0.116\\ -0.116\\ 0.190\\ 0.359\\ 0.569\\ 0.433\\ 0.433\end{array}$	$\begin{array}{c} 0.431\\ 0.107\\ 0.107\\ 0.274\\ 0.140\\ 0.042\\ 0.0153\\ 0.017\\ 0.917\\ 0.938\\ 0.917\\ 0.978\end{array}$	$\begin{array}{c} 0.272 \\ -0.133 \\ -0.029 \\ 0.075 \\ 0.075 \\ -0.175 \\ 0.175 \\ 0.127 \\ -0.003 \\ 0.227 \\ 0.227 \end{array}$	$\begin{array}{c} 0.300\\ 0.1106\\ 0.119\\ 0.349\\ 0.334\\ 0.025\\ 0.054\\ 0.054\\ 0.007\\ 0.186\end{array}$
Fold ch	2 day	$\begin{array}{c} 0.040 \\ 0.047 \\ 0.105 \\ 0.105 \\ 0.020 \\ 0.000 \\$	0.008 0.117 0.070 0.604 0.299	$\begin{array}{c} 0.410\\ -0.135\\ 0.238\\ 0.041\\ 0.330\\ 0.228\\ 0.228\\ 0.228\end{array}$	-0.108 -0.035 0.045 0.279 -0.275 -0.275 0.626 0.508 -0.046	-0.167 -0.477 -0.477 -0.477 -0.143 0.014 0.568 -0.215 0.162 0.140 0.162 0.140 0.212 0.057	$\begin{array}{c} -0.095\\ -0.095\\ 0.136\\ 0.009\\ 0.009\\ 0.009\\ 0.009\\ -0.117\\ -0.166\\ -0.117\\ 0.002\\ 0.002\\ -0.106\end{array}$
	1 day	$\begin{array}{c} -0.029 \\ -0.031 \\ -0.146 \\ 0.146 \end{array}$	-0.196 0.070 0.295 0.354 0.101	$^{-0.228}_{-0.158}$ $^{-0.158}_{-0.130}$ $^{-0.130}_{0.038}$ $^{0.040}_{0.040}$	$\begin{array}{c} -0.063\\ -0.132\\ 0.242\\ 0.499\\ -0.018\\ -0.018\\ -0.007\\ -0.007\\ -0.037\\ \end{array}$	-0.257 -0.257 -0.257 -0.256 -0.134 0.334 -0.268 -0.268 -0.268 -0.268 -0.268 -0.268 -0.268 -0.268 -0.268 -0.268 -0.266 0.334 -0.266 -0.076 -0.079 -0.079 -0.079 -0.079 -0.079 -0.079 -0.079 -0.079 -0.079 -0.070	$\begin{array}{c} -0.139\\ -0.246\\ -0.246\\ -0.043\\ -0.043\\ -0.043\\ 0.164\\ 0.164\\ 0.277\\ -0.247\\ -0.017\\ -0.060\end{array}$
	Cluster	४ ४४	ৰ ৰ ৰ ৰ ৰ ৰ ৰ	4 4 4 4 4 4 •	44444444 4	≮∢∢∝∞∞∞∞∞∞∞∞∞	ока какакака
	No.	- 0 0 -	4500780	$112 \\ 112 \\ 113 $	$110 \\ 110 $	2224	337 337 337 337 45 45 45 45 45 45 45 45 45 45 45 45 45

Gene Expression in Differentiating Neural Stem Cells

TABLE I. Significantly Expressed Genes During Differentiation of NSCs

567

(Continued)

			Fold ch	1ange (lo	şarithm,	base 2)				Result of Karsten
N0.	Cluster	1 day	2 day	3 day	6 day	12 day	15 day	GenBank	Title	et al. [2003]
48 49	щща	-0.382 0.099 0.341	$-0.309 \\ 0.041 \\ 0.151$	$\begin{array}{c} 0.132 \\ 0.157 \\ 0.154 \end{array}$	-0.330 0.346 0.143	$0.818 \\ 1.009 \\ 1.274$	1.269 1.098 1.045	AA030447 BG085219 W90607	Peripherin 1 RIKEN cDNA 1810009M01 gene Front scoreme A budactered 1 recorded	
51	рШ	-0.341 -0.319	-0.800	-0.136 -0.186	-1.116	0.316	0.892	AA122925	Dubyt toenzyne A nytt atase 1, peroxisomat Carbonic anhydrase 2	Up-regulated in NS
233	<u>م</u> د	-0.240 0.218	0.136 0.141	0.015 0.136	-0.341 0.675	1.420	1.518 1.376	AA105295 RG079209	BCL2/adenovirus E1B 19 kDa-interacting protein 1, NIP3 ^a RIKEN cDNA 1700029101 gene	Up-regulated in NS
54	р	0.021	0.030	0.306	0.341	1.302	1.253	BG065432	ATP-binding cassette, sub-family F (GCN20), member 3	
55	B	-0.009	0.139	0.162	0.616	1.218	0.876	BG065450	Unknown EST	
56 77	<u>с</u> р	0.049	0.146	0.219	0.686	0.717	1.152	BG071897	Fatty acid binding protein 3, muscle and heart	IIn under of the MC
58	9 m	0.007	0.040	0.071	0.083	0.709	1.274	BG064176	r relouroprini Lysosomal-associated protein transmembrane 5	Op-regulated III INS
59	B	-0.162	-0.204	-0.197	0.260	1.046	1.135	BG064802	Secreted acidic cysteine rich glycoprotein	
60	щ	0.188	0.273	0.281	0.489	0.719	1.003	BG079424	Ornithine aminotransferase	
61 63	בן בב	0.050	-0.196	-0.102	0.305	1.328	1.816	BG073601	Diazepam binding inhibitor	IIn nomilated in DC
7 63	ם מ	-0.224	-0.147	-0.230 -0.134	0.442	0.700 1.050	1.112	RG070071	celetroprotetti r, piasma, 1 Heat shock motain 1	Op-regulated III DO
64 64	а	-0.045	-0.022	-0.027	0.024	0.973	1.306	AI835702	GM2 ganglioside activator protein	
65	В	0.150	0.308	0.265	0.752	1.118	1.164	BG084031	Similar to hypothetical protein FLJ90036	
$\overline{99}$	В	0.087	-0.001	-0.379	0.206	0.775	1.093	BG087985	Laminin B1 subunit 1	
67	ф	-0.065	0.354	-0.137	0.562	1.187	0.954	AA023786	Polycystic kidney disease 2	
89	ם ה	0.122	-0.059	-0.111	0.620	1.086	1.577	BG085352	Procollagen, type IV, alpha 1	
60 70	ממ	0.029	-0.142	-0.149 -0.944	-0.017	0.898	1.205	BG066605	Instructuata Laminin gamma 1	
71	рш	0.084	0.096	-0.424	-0.239	1.214	1.023	BG073394	Adducin 3 (gamma)	Up-regulated in DC
72	В	-0.012	-0.203	-0.044	0.721	0.999	1.344	BG087341	Procollagen, type IV, alpha 2	0
73	Ю	-0.125	-0.779	-0.827	-0.350	1.282	1.289	AW557873	Inhibitor of DNA binding 3	
74	ф	0.026	-0.204	-0.191	0.366	1.516	1.231	AA034564	Procollagen, type V, alpha 2	
01 92	n n	0.125	0 207 0 207	-0.389 0 158	0.203	0.424 1 325	1.080 1.466	BG001240 BG070449	FUIAIRE-mout protein kinase 3 RIKEN ADNA 4933436710 œne	
22	рш	0.060	0.082	0.018	0.555	0.814	1.071	AA230924	Mosin light chain. alkali, nonmuscle	
78	В	0.114	0.270	0.328	0.623	0.632	1.199	BG067269	Adenylate kinase 2	
79	щ	0.166	0.213	0.090	0.518	1.055	0.963	BG087365	Stromal cell derived factor receptor 1	
080	ц	0.027	-0.031	-0.130	0.326	1.125	1.800	BG082965	Cyclin-dependent kinase 8	
0 1 0 0 0	ם ת	-0.019	0.010	-0.032	0.000	0.076	1.046	BC071494	Solute carrier laminy 0, member o Internel membrene nuotein 90	
1 62		0.055	0.148	0.176	0.856	0.882	1.201	BG083801	RIKEN CDNA 2610036422 gene	
848	Ъ	-0.131	-0.297	-0.573	-0.134	0.985	1.115	BG085415	Gap junction membrane channel protein alpha 1	
85	в	0.229	-0.133	-0.029	0.221	1.267	0.901	AA030540	Adenine phosphoribosyl transferase	
8 <u>6</u>	B I	0.049	-0.516	-1.004	-0.146	1.213	1.598	AA109951	Beta-2 microglobulin	
87	щр	0.327	-0.225	-0.216	-0.020	1.170	0.917	BG084290	Inhibitor of DNA binding 2	
000	ם מ	0.150	0.000	0.000	0.449	1 219	1 100	DCU000130	ZINC IINGET PROTEIN 31 Thismodossin internating motoin	IIn nomilated in DC
60 06	рш	-0.391	-0.714	-0.780	-0.182	0.586	1.467	BG078028	Lectin. galactose binding. soluble 1	Op-regulated III DO
$\frac{1}{91}$	В	0.081	-0.041	0.014	0.493	1.046	1.307	BG079624	Serine (or cysteine) proteinase inhibitor, clade E, member 2	
$\frac{92}{2}$	щ	-0.009	-0.023	-0.118	0.365	1.235	1.137	AW491453	Calpain 6	
93 94	цц	-0.211	-0.023	0.095 - 0.043	0.397	0.787	1.051	BG084582 Atrages	Lectin, galactose binding, soluble 8 Catanin dalta 9	
95	Ъ	-0.230	-0.490	0.178	-0.523	0.975	1.451	AI835385	Lactate dehydrogenase 1, A chain	

TABLE I. (Continued)

Ahn et al.

Up-regulated in NS		Up-regulated in NS	OP-regulated III 100										SIN -: F-+-[11	Up-regulated in INS		Up-regulated in NS						SIN -: F -+- [11	Op-regulated III NO					Up-regulated in NS	Up-regulated in NS	Up-regulated in NS	Up-regulated in NS	Up-regulated in NS Up-regulated in NS	1	÷ č	(Continued)
Nuclear protein 1 Cadherin 13ª Mus musculus transcribed sequences	Lysosomal membrane glycoprotein 2 Expressed sequence AW743433 Prosaposin Exportin 4 RERP. cDNA 1700011103 gene BRF2, subunit of RNA polymerase III transcription initiation	factor H2A histone family, member Z	ecta outogene Karyopherin (importin) alpha 2	Calmodulin binding protein 1 Topoisomerase (DNA) II alpha	Spermine synthase	cDNA sequence BC034753	Activator of S phase kinase <i>RIKEN c</i> DNA 9.310035M92 gene	Kinesin family member 23	High mobility group nucleosomal binding domain 2	Histone 1, H4m Zine finger medein 36–C3H tyme-like 1	Kinesin family member 22, pseudogene	DEK oncogene (DNA binding)	Centromere autoantigen A	Cycun 5.1 Ulhianitin snecific matease 1	High mobility group AT-hook 2	CDC28 protein kinase 1	па пізопе, іапцу а р <i>RIKEN cDNA 2600016F06</i> тепе	Cytochrome P450, family 2, subfamily d, polypeptide 10	Histone 3, H2bb	Gene rıch cluster, U8 gene Nuclear autoantigenic snerm motein (histone-hinding)	DNA segment, Chr 2, ERATO Doi 750, expressed	RIKEN cDNA A730011011 gene	Cycuii 102 Bloom syndrome homolog (human)	Thymopoletin	Ribonucleotide reductase M2 RIKEN cDNA 9610901419 rene	Ttk protein kinase	RNÅ binding motif protein 3	Pyrroline-5-carboxylate synthetase	Cycuit A2 Pituitary tumor-transforming 1	Forkhead box M1	Minichromosome maintenance deficient 7 (S. cerevisiae)	Transforming, actdic colled-coll containing protein 3 Chromatin assembly factor 1, subunit A (p150)	Histone 1, H1c RIKEN ADNA 9700090718 come	RIKEN cDNA 5430410E06 gene	
BG070902 AI385510 BG067443	BG085167 BG080373 BG080373 BG088310 AU022767 BG068317 BG068317 BG068317	AA466087	BG066442	BG079172 BG079172	BG081202 BG065190	BG080962	BG082035 BG075630	BG068666	AI836129	BG082403 A A060905	BG074248	BG087310	BG072056	AA390324 RG066359	BG066232	BG072545	BG085335	W81792	AI836520	BG066499 BG076805	BG082508	BG085939	AW34/023 AA030433	AI835559	BG078138 RG079979	AW553739	AA034857	AI844331	BG069168	BG087468	AA544948	BG068759 AA153012	AA049416 RG079289	AA120637	
$\begin{array}{c} 0.837 \\ 1.045 \\ 1.108 \end{array}$	1.188 1.048 0.728 1.051 1.006 0.862	-0.817	-0.517	-0.770 -0.603	-1.155 -0.986	-1.078	-0.571 -1.286	-0.698	-0.735	-0.744	-0.607	-0.933	-0.868	-0.695	-1.525	-0.753	-1.052	-1.020	-1.504	-0.841 -1.028	-0.897	-1.026	-1.0.44 -0.860	-1.274	-0.908	-0.804	-1.176	-0.957	-1.029 -0.476	-1.212	-0.904	-1.123 -0.945	-1.157 -0.596	-0.097	
$1.052 \\ 1.033 \\ 0.372$	$\begin{array}{c} 0.837 \\ 0.755 \\ 1.024 \\ -0.373 \\ 0.132 \\ 0.061 \end{array}$	-1.136	-1.217	-0.991 -1.542	-1.351 -0.397	-1.153	-1.054 -1.366	-0.885	-1.223	-1.630	-1.088	-1.324	-1.055	-1.137	-1.594	-1.198	-0.780	-0.803	-1.827	-0.889 -1.286	-1.249	-1.410	-1.042 -1.342	-1.430	-1.213 -1.195	-1.110	-1.822	-0.666	-1.209	-0.839	-1.041	-1.026 -1.024	-1.370 -1.940	-1.014	
$^{-0.269}_{-1.008}$	$\begin{array}{c} 0.178 \\ 0.222 \\ 0.452 \\ 0.272 \\ 0.436 \\ 0.431 \end{array}$	-1.193	-1.403 -1.026	-1.107 -1.486	-0.677	-1.108	-0.832 -0.844	-1.268	-0.679	-1.014	-0.925	-1.057	-1.327	-1.370 -0.517	-1.311	-0.791	-0.708	-0.996	-2.048	-1.512	-1.380	-1.600	-0.838	-0.941	-1.081	-0.819	-0.376	-1.184	-1.241	-0.953	-0.770	-1.335 -0.755	-1.865 -1.304	-0.454	
$\begin{array}{c} -0.350 \\ 0.053 \\ -0.309 \end{array}$	$egin{array}{c} -0.083 \ -0.207 \ 0.252 \ -1.324 \ -0.947 \ -1.131 \ \end{array}$	-0.492	-0.352	-0.454 -0.705	-0.437	-0.295	-0.416 -0.493	-0.425	-0.390	-0.638	-0.363	-0.530	-0.649	-0.507	-0.819	-0.657	-0.549	-0.613	-0.862	-0.357	-0.779	-0.500	-0.177	-0.506	-0.667	-0.373	-0.336	-0.420	-0.686	-0.531	-0.417	-0.669	-0.618 -0.860	-0.778	
$\begin{array}{c} 0.147 \\ 0.048 \\ -0.025 \end{array}$	$\begin{array}{c} 0.146 \\ -0.103 \\ 0.108 \\ 0.843 \\ 0.777 \\ 1.120 \end{array}$	-0.264	-0.082	-0.074 -0.085	-0.364	0.229	0.045 -0.095	-0.286	-0.345	-0.308	-0.280	-0.277	-0.254	-0.263	-0.416	-0.375	-0.157	-0.317	-0.278	-0.203	-0.154	-0.152	-0.140 -0.354	-0.193	-0.382	-0.308	-0.534	0.521	-0.112	-0.197	-0.352	-0.350 -0.425	-0.205 -0.152	-0.404	
$\begin{array}{c} 0.285 \\ -0.069 \\ -0.006 \end{array}$	$\begin{array}{c} 0.249 \\ 0.130 \\ -0.199 \\ 0.986 \\ 1.308 \\ 1.220 \end{array}$	-0.143	-0.135	-0.243 -0.104	-0.061	-0.224	-0.072 -0.121	-0.072	-0.110	0.000	-0.085	0.089	0.011	-0.035 0.124	0.045	0.073	-0.081	-0.018	-0.201	0.032 0.131	-0.174	0.061	-0.122	0.194	0.010	0.227	0.066	0.011	-0.158	0.151	0.221	0.131 0.263	-0.062 0.077	-0.204	
n n n	MMMCCC	Q	יסמ	חם	חר	ЪО	חר	D	D		D	Пı			Ъ	П		D	Д¢		Ð			D		D	D		ЪС	D		חם	מר	Ъ	
96 97 98	$\begin{array}{c} 99\\ 100\\ 102\\ 103\\ 103\end{array}$	105	107	109	1110	112	113 114	115	116	118	119	120	121	122	124	125	127	128	129	131 131	132	133	135 135	136	$137 \\ 138 $	139	140	141	$142 \\ 143$	144	145	146 147	148 149	150	

Gene Expression in Differentiating Neural Stem Cells

	Result of Karsten	et al. [2003]		Up-regulated in NS	Up-regulated in NS	Up-regulated in NS	Up-regulated in NS	Up-regulated in NS Up-regulated in NS	Up-regulated in NS	Up-regulated in NS		
Continued)		Title	Serine/threonine kinase 18 Sema domain, transmembrane domain and cytoplasmic domain,6C Cyclin B1, related sequence 1 Budding uninhibited by benzimidazoles 1 homolog, beta (S.	Guccorticol induced transcript 1 Methylenetetrahydrofolate dehydrogenase (NAD+ dependent) Hypothetical protein C530022J18	Chorionic somatomammotropin hormone 1 Tcra enhancer-binding factor interacting protein 1 High mobility group box 2 CDK5 (cyclin-dependent kinase 2)-associated protein 1	RIKEN cDNA 2600016C11 gene SMC4 structural maintenance of chromosomes 4-like 1 (yeast) MAD2 (mitotic arrest deficient, homolog)-like 1 (yeast) Poliovirus receptor-related 3	Lamin B1 Cell division cycle 2 homolog A (S. <i>pombe</i>) Small nuclear ribonucleoprotein polypeptide G	Budding uninhibited by benzimidazoles 1 homolog (<i>S. cerevisiae</i>) Proliferating cell nuclear antigen Shc SH2-domain binding protein 1	Polymyositis/scleroderma autoantigen 1 CDC28 protein kinase regulatory subunit 2 Sperm associated antigen 5 SMC2 structural maintenance of chromosomes 2-like 1 (yeast) Transducin-like enhancer of solit 4. E(sn)) homolog (<i>Drosophila</i>)	RIKEN cDNA 4933432H23 gene Midholin Enhancer of zeste homolog 2 (Drosophila) Erythrocyte protein band 4.1 Isopentenyl-diphosphate delta isomerase Cadherin 2	Mucroubule-associated protein 1 D Topoisomenase (DNA) I Polyhomeotic-like 2 (<i>Drosophila</i>) Splicing factor, arginine/serine-rich 2 (SC-35) <i>RIKEN CDNA 1110055B05</i> gene Heterogeneous nuclear riboucleoprotein A1 Nucleosome assembly protein 1-like 1 Ovclin-dependent kinase inhibitor 1C (P57)	Heterogeneous nuclear ribonucleoprotein A/B Cyclin-dependent kinase 4 Latrophilin 2 High mobility group box 3 cDNA sequence BC010348 Makorin, ring finger protein, 3 Heterogeneous nuclear ribonucleoprotein D
BLE I. (C		GenBank	AA276998 AI847223 BG071965 BG071804	BG088398 BG076333 AI853169	BG064686 BG069969 BG085427 BG085427 BG086151	BG077092 BG081629 BG067860 BG083621	AA498281 BG064846 BG085860	BG086805 BG064598 BG080690	BG069986 BG083522 AI893902 BG077844 BG071846	BG085705 AW554258 BG074931 AA498495 BG079889 AA242889 AA242226	AI840953 BG081111 BG086306 AI836508 BG086100 BG072534 BG064278 BG064278	BG074524 BG085009 BG087161 AA048831 A1848377 A1848377 A1323209 BG078653
TA		15 day	$egin{array}{c} -1.128\ -1.825\ -0.442\ -0.905 \end{array}$	$\begin{array}{c} -0.942 \\ -0.418 \\ -0.877 \end{array}$	$\begin{array}{c} -0.868 \\ -0.799 \\ -0.528 \\ -0.890 \end{array}$	$egin{array}{c} -1.068 \ -0.345 \ -0.901 \ -1.118 \ -1.118 \end{array}$	$egin{array}{c} -1.137 \ -0.478 \ -0.380 \end{array}$	$\begin{array}{c} -0.546 \\ -0.994 \\ -0.636 \end{array}$	-1.048 -0.011 -0.620 -0.313 -1.309	-1.303 -0.786 -1.029 -1.464 -1.018 -1.740	-1.451 -0.683 -1.080 -1.421 -1.550 -0.643 -0.971 -1.304	-1.308 -1.285 -1.247 -1.011 -0.845 -1.070 -1.021
	base 2)	12 day	$egin{array}{c} -1.395 \ -2.380 \ -1.290 \ -1.103 \ -1.103 \ \end{array}$	$-1.060 \\ -0.272 \\ -1.013$	$egin{array}{c} -0.967 \ -1.054 \ -1.204 \ -1.301 \end{array}$	$egin{array}{c} -1.536 \ -1.044 \ -1.386 \ -1.167 \ -1.167 \end{array}$	$egin{array}{c} -1.111 \ -1.052 \ -1.024 \end{array}$	$\begin{array}{c} -0.993 \\ -1.732 \\ -1.106 \\ \end{array}$	-1.498 -1.014 -0.559 -0.867 -0.940	-0.809 -1.151 -1.151 -1.280 -0.963 -1.303	-0.771 -1.021 -1.005 -1.271 -1.166 -1.182 -0.708	-1.433 -1.289 -1.071 -0.715 -1.054 -0.929 -0.870
	garithm,	6 day	$egin{array}{c} -1.133 \ -1.907 \ -1.524 \ -1.524 \ -0.958 \end{array}$	$\begin{array}{c} -0.751 \\ -1.075 \\ -0.920 \end{array}$	$egin{array}{c} -1.103 \ -0.396 \ -0.753 \ -0.753 \ -0.597 \end{array}$	$egin{array}{c} -0.575 \ -1.061 \ -1.108 \ -1.108 \ -1.106 \ -1.106 \ \end{array}$	$\begin{array}{c} -0.529 \\ -1.223 \\ -0.529 \end{array}$	$-1.600 \\ -0.647 \\ -1.280 \\ -$	-1.732 -0.671 -1.140 -1.134 0.005	$\begin{array}{c} 0.090\\ 0.188\\ -0.307\\ -0.656\\ -0.656\\ -0.096\\ -0.521\\ 0.521\end{array}$	$\begin{array}{c} 0.061 \\ -0.302 \\ 0.285 \\ 0.285 \\ 0.285 \\ -0.388 \\ -0.388 \\ -0.368 \end{array}$	-0.035 -0.516 -0.192 -0.315 -0.374 -0.525 -0.298
	ange (lo	3 day	$\begin{array}{c} -0.596 \\ -1.091 \\ -0.951 \\ -0.526 \end{array}$	$\begin{array}{c} -0.675 \\ -0.361 \\ -0.558 \end{array}$	$\begin{array}{c} -0.617 \\ -0.510 \\ -0.715 \\ -0.114 \end{array}$	$\begin{array}{c} -0.407 \\ -0.860 \\ -0.909 \\ -0.606 \end{array}$	$\begin{array}{c} -0.606 \\ -0.818 \\ -0.321 \end{array}$	-0.807 -0.462 -0.605	-0.654 -0.286 -0.547 -0.723 0.372	$\begin{array}{c} 0.209\\ 0.378\\ 0.378\\ 0.036\\ 0.016\\ 0.290\\ -0.165\\ 0.290\\ 0.290\end{array}$	$\begin{array}{c} 0.129\\ -0.009\\ 0.323\\ -0.104\\ -0.066\\ -0.070\\ -0.444\\ 0.101\end{array}$	-0.268 -0.235 -0.085 -0.013 -0.248 0.182 -0.405
	Fold ch	2 day	$\begin{array}{c} -0.407 \\ -0.307 \\ -0.412 \\ -0.418 \end{array}$	$\begin{array}{c} -0.264 \\ 0.146 \\ -0.247 \end{array}$	$\begin{array}{c} -0.492 \\ -0.546 \\ -0.395 \\ -0.225 \end{array}$	$\begin{array}{c} -0.538 \\ -0.033 \\ -0.360 \\ -0.130 \end{array}$	$\begin{array}{c} -0.417 \\ -0.619 \\ -0.376 \end{array}$	$\begin{array}{c} -0.271 \\ -0.479 \\ -0.420 \\ 0.120 \end{array}$	$\begin{array}{c} -0.480 \\ -0.215 \\ -0.240 \\ -0.362 \\ 0.290 \end{array}$	$\begin{array}{c} 0.170\\ 0.207\\ 0.106\\ 0.106\\ 0.083\\ -0.065\\ -0.151\\ 0.051\end{array}$	$\begin{array}{c} 0.370\\ 0.594\\ 0.295\\ -0.298\\ 0.069\\ -0.016\\ 0.427\end{array}$	$\begin{array}{c} -0.029\\ -0.088\\ -0.058\\ -0.058\\ -0.027\\ -0.011\\ -0.116\\ -0.230\end{array}$
		1 day	$\begin{array}{c} 0.251 \\ -0.123 \\ -0.046 \\ 0.257 \end{array}$	$\begin{array}{c} 0.175 \\ -0.332 \\ -0.015 \end{array}$	$\begin{array}{c} -0.024 \\ -0.062 \\ -0.029 \\ -0.041 \end{array}$	$\begin{array}{c} 0.072 \\ 0.330 \\ 0.252 \\ 0.229 \end{array}$	$\begin{array}{c} -0.156 \\ 0.010 \\ -0.182 \end{array}$	$\begin{array}{c} 0.267 \\ -0.042 \\ -0.208 \end{array}$	$\begin{array}{c} -0.182 \\ -0.009 \\ 0.140 \\ 0.040 \\ -0.436 \end{array}$	-0.031 -0.020 -0.012 -0.049 0.280 -0.053	$\begin{array}{c} 0.045\\ 0.027\\ -0.032\\ 0.091\\ 0.225\\ 0.062\\ 0.074\\ 0.014\end{array}$	$\begin{array}{c} 0.097\\ 0.054\\ 0.016\\ 0.109\\ 0.109\\ 0.272\\ 0.435\\ 0.435\end{array}$
		Cluster						מססו	арары	되면되면되어	리면면면면면면면	되면되면되면
		No.	$151 \\ 152 \\ 153 \\ 154 \\ 154 \\ 154 \\ 154 \\ 154 \\ 151 $	$155 \\ 156 \\ 157 $	$158 \\ 159 \\ 160 \\ 161$	$162 \\ 163 \\ 164 \\ 165 $	$166 \\ 167 \\ 168 $	$\begin{array}{c}169\\170\\171\\121\end{array}$	$172 \\ 173 \\ 174 \\ 175 \\ 176 $	177 178 179 180 181 182	$183 \\ 184 \\ 185 \\ 186 \\ 187 \\ 188 \\ 189 \\ 190 \\ 190 $	$191 \\ 192 \\ 193 \\ 195 \\ 196 \\ 197 $

Ahn et al.

Up-regulated in NS		Up-uregulated in DC	Up-regulated in DC	(Continued)
C-terminal binding protein 1 Ubiquilin 2 Upstream regulatory element binding protein 1 SRY-box containing gene 4 Mesoderm specific transcript Chromobox homolog 1 (<i>Drosophila</i> HP1 beta) Splicing factor, arginine/serine-rich 3 (SRp20) Splicing factor 16 Neuronatin Zinc finger protein 162 Neuronatin SRY-box containing gene 11 Kruppel-like factor 15 H1 histone family, member 0 KH domain containing, RNA binding, signal transduction	Thistocourse 1 Dihydropyrimidinase-like 3 Duble cortin and calcium/calmodulin-dependent protein kinase-like 1 Haat shock protein Amyloid beta (A4) precursor protein Amyloid beta (A4) precursor protein ALLI-fused gene from chromosome 1q Guanine deaminase Frotein kinase, cAMP dependent, catalytic, beta Synaptotagmin 7 Myeloid ecotropic viral integration site-related gene 1 Guanine nucleotide binding protein, alpha o Sialyltransferase 8 (alpha-2, 8-sialyltransferase) B Giyoprotein m6a Pleckstrin homology, Sec7 and coiled-coil domains 2	p21 (CDKN1A)-activated kinase 4 Brain protein 44-like <i>BIKEN cDNA 9430072K23</i> gene Cyclin M2 Stathmin-like 4 Gamma-aminobutyric acid (GABA-A) transporter 1 Microtubule-associated protein tau	Rectantionation of the second of the second second second clutamate receptor, ionotropic, AMPA3 (alpha 3) Receptor (calcitonin) activity modifying protein 2 RIKEN cDNA 3110039L19 gene Calmodulin 1 RIKEN cDNA 111003P13 gene TEA domain family member 2 Protein kinase (, beta Protein kinase inhibitor, alpha Regulator of G-protein signaling 2	Tropomodulun 2 N-myc downstream regulated 2 Ephrin B3 Nuclear respiratory factor 1 Microtubule-associated protein 2 Mus musculus transcribed sequences Mus musculus transcribed sequences
AA212717 AU045483 AU045483 AU045483 BG070656 BG087241 BG070157 AA125197 AA125197 AA125197 AA125197 AA125197 AA120351 AA120351 AA120351 AA1203739 BG07739 BG087709 BG087709 BG087709	AA209061 W18828 AI842333 BG064500 BG064500 BG082182 AA547428 AA547428 AA547428 AA547428 AA53182 AA531471 AA231471 AA3314	$\begin{array}{c} BG087300\\ BG086955\\ BG086955\\ BG082280\\ BG070401\\ W42241\\ W42241\\ A12840345\\ AA028410\\ PC083035\\ PC08305\\ PC08305$	AI8630525 AI863686 AA521764 BG075834 BG075834 AI844249 W6642249 W664222 AI837858 AI837858 AI835523 AI835523 AI835523 AI835523 AI835523 AI835523	BG067399 BG084093 BG086006 BG0800627 AI849758 BG069134 BG066404
-1.093 -1.013 -1.013 -1.263 -0.744 -0.744 -1.165 -0.706 -1.397 -1.084 -1.397 -1.397 -1.1026 -1.1026	$\begin{array}{c} -1.002\\ 0.281\\ 0.638\\ 0.638\\ 0.868\\ 0.145\\ 0.145\\ 0.821\\ 0.821\\ 0.799\\ 0.578\\ 0.578\\ 0.556\\ 0.557\end{array}$	0.423 1.008 0.836 0.836 0.836 0.806 0.745 1.150 0.745	$\begin{array}{c} 0.324\\ 0.838\\ 0.884\\ 0.242\\ 0.314\\ 0.314\\ 0.315\\ 0.395\\ 0.729\\ 0.729\\ 0.775\\ 0.275\end{array}$	$\begin{array}{c} 0.972\\ 0.887\\ 0.380\\ 0.624\\ 0.215\\ 1.012\\ 0.733\end{array}$
$\begin{array}{c} -0.677\\ -0.618\\ -0.618\\ -0.729\\ -0.729\\ -1.011\\ -1.016\\ -1.171\\ -1.171\\ -1.171\\ -1.211\\ -1.211\\ -1.211\\ -0.447\\ -1.211\\ -0.642\\$	$\begin{array}{c} -0.904\\ 0.847\\ 1.248\\ 1.248\\ 0.371\\ 0.371\\ 0.371\\ 0.371\\ 1.157\\ 0.280\\ 1.112\\ 0.280\\ 0.280\\ 1.011\\ 1.011\\ 1.011\\ 1.011\end{array}$	0.439 1.327 1.133 0.595 1.121 1.121 1.556 2.036	0.522 1.2552 1.2553 0.838 0.838 0.838 0.838 0.838 0.838 0.838 0.838 0.838 0.838 0.838 0.1094 1.139 0.551	1.068 1.190 0.685 0.822 0.905 0.876 0.685
$\begin{array}{c} -0.025\\ -0.243\\ 0.243\\ 0.1568\\ 0.1568\\ 0.166\\ -0.272\\ 0.273\\ 0.272\\ 0.273\\ 0.296\\ 0.296\\ 0.296\\ 0.296\\ 0.296\\ 0.296\\ 0.296\\ 0.296\\ 0.296\\ 0.296\\ 0.296\\ 0.293\\ 0.29$	$\begin{array}{c} -0.276\\ 1.175\\ 0.657\\ 0.657\\ 1.121\\ 1.177\\ 1.177\\ 1.177\\ 1.200\\ 0.989\\ 0.989\\ 0.989\\ 0.989\\ 0.9834\\ 0.7166\\ 0.7$	0.636 1.167 0.983 0.725 1.061 0.480 0.480 2.075	1.730 1.160 1.303 1.311 1.144 1.015 1.015 1.082 1.082 1.082 1.073 1.273 1.273 1.273 1.273	$1.039 \\ 0.829 \\ 1.141 \\ 1.058 \\ 1.058 \\ 1.538 \\ 0.797 \\ 1.193 \\ 1.193 $
$\begin{array}{c} -0.182\\ -0.447\\ -0.123\\ 0.243\\ 0.273\\ -0.173\\ -0.155\\ -0.155\\ -0.155\\ -0.155\\ 0.242\\ 0.242\\ 0.242\\ 0.0565\\ 0.0565\\ 0.139\\ 0.565\end{array}$	$\begin{array}{c} -0.084\\ 1.329\\ 1.024\\ 1.024\\ 0.788\\ 1.080\\ 1.080\\ 1.080\\ 0.788\\ 0.788\\ 0.788\\ 0.788\\ 0.7791\\ 0.757\\ 0.820\\ 0.754\\ 0.751\\ $	1.023 0.648 0.557 0.557 1.065 1.065 1.327 0.867 1.327	-0.009 0.863 0.635 0.725 0.697 0.736 0.736 0.736 0.759 0.759 0.779 0.779	$\begin{array}{c} 0.611\\ 0.620\\ 0.660\\ 0.490\\ 1.176\\ 0.323\\ 0.575\end{array}$
$\begin{array}{c} -0.030\\ 0.438\\ -0.138\\ 0.138\\ 0.138\\ 0.155\\ -0.219\\ -0.219\\ -0.219\\ 0.155\\ -0.328\\ 0.228\\ 0.228\\ 0.201\\ 0.062\end{array}$	$\begin{array}{c} -0.232\\ 0.668\\ 0.607\\ 0.667\\ 0.667\\ 0.667\\ 0.567\\ 0.567\\ 0.612\\ 0.612\\ 0.612\\ 0.672\\ 0.081\\ 0.081\\ 0.673\\ 0.0310\\ 0.310\\ 0.310\\ 0.310\\ 0.719\\ 0.710\\ 0.719\\ 0.710\\ 0.719\\ 0.710\\ 0.719\\ 0.710\\ $	$\begin{array}{c} 0.591\\ 0.381\\ 0.474\\ 0.302\\ 0.514\\ 0.192\\ 0.695\\ 0.192\\ 0.$	-0.129 0.557 0.679 0.429 0.540 0.540 0.237 0.237 0.237	$\begin{array}{c} 0.227\\ 0.578\\ 0.578\\ 0.573\\ 0.266\\ 0.355\\ 0.548\\ 0.548\end{array}$
$\begin{array}{c} 0.058\\ 0.111\\ 0.120\\ 0.072\\ 0.062\\ 0.062\\ 0.076\\ 0.076\\ 0.076\\ 0.010\\ 0.076\\ 0.010\\ 0.010\\ 0.010\\ 0.010\\ 0.047\\ 0.047\\ \end{array}$	$\begin{array}{c} 0.024\\ -0.058\\ -0.058\\ 0.145\\ 0.007\\ -0.074\\ -0.071\\ 0.169\\ 0.169\\ 0.169\\ 0.169\\ 0.108\\ 0.100$	$\begin{array}{c} 0.123\\ 0.138\\ 0.138\\ 0.085\\ -0.063\\ -0.050\\ -0.235\\ 0.078\\ 0.078\end{array}$	0.173 0.177 0.203 0.040 0.203 0.203 0.234 0.234 0.234	$\begin{array}{c} 0.009\\ 0.239\\ 0.239\\ 0.400\\ 0.206\\ 0.287\\ 0.287\\ 0.435\end{array}$
	ובן דע דע - דע	전 전 전 전 전 전 전 전	י די	고 도 도 도 도 도 도
198 1199 200 201 202 203 204 203 206 206 206 206 201 211 211 211 211 211	214 215 215 216 2219 2219 2223 2224 2225 2223 2224 2225 2225 2226 2226 2226 2226 2226	$228 \\ 2229 \\ 2320 \\ 2332 \\ 2$	2336 2337 2339 241 243 243 243 243 243 243	245 246 247 248 249 250 251

			Fold ch	ange (lo	garithm,	base 2)			-AJ- τ1 α	
N0.	Cluster	1 day	2 day	3 day	6 day	12 day	15 day	GenBank	Title et al. [20	Narsten 2003]
$252 \\ 253 $	ਦਾ ਦ	0.249 -0.026	0.465 0.091	0.723 0.134	1.001	0.505	0.534 0.836	BG069707 BG086024	CD1d1 antigen Activated laukooste cell adhesion molecule	
254	- E-	-0.174	0.396	0.376	0.607	1.004	0.383	BG073000	Protocadherin gamma subfamily B, 4	
255	۲ı	-0.254	0.022	0.328	1.259	0.915	0.726	AI852463	Protein tyrosine phosphatase, receptor type, T	
256	Б	0.015	0.063	0.088	1.094	0.721	0.924	AI323177	Neurofibromatosis 2	
257	۲ı	0.165	0.388	0.738	1.039	0.531	0.250	AA463173	Solute carrier family 11, member 2	
258	Γı	0.134	0.162	0.531	1.005	-0.094	-0.262	BG077853	Coatomer protein complex, subunit gamma 2	
259	ы	0.173	0.067	0.056	1.048	-0.156	-0.358	BG067712	$RIKEN c\hat{DNA} 672046\hat{3}E0\hat{2}$ gene	
^a Gene:	with opposi	te expressi	ion pattern	ı in overlaı	oped genes	s of both sys	stems.			

We also categorized the 259 genes based on their functions, referring to Gene OntologyTM and classified them into 14 groups (Fig. 4). Frequencies of these functionally classified genes in each cluster are shown in Figure 4, with statistical significance evaluated by Fisher's exact test for high and low frequencies. High frequencies were observed as follows: "Transport"-related genes in the cluster A; "cell adhesion"-related genes in the cluster B; both "nucleic acid metabolism"- and "cell cycle"-related genes in the cluster D; both "transcription"- and "RNA processing"-related genes in the cluster E.

Transport-related genes. Among genes in the cluster A with properties of gradual increase during differentiation, significantly frequent were members of the category "transport"related genes. These genes are a ATP-binding cassette, sub-family A, member1(ABCA1); solute carrier family 1, member 3; gamma-aminobutyric acid receptor, subunit beta 3; ATPase, Na+/K+ transporting, beta 1 and cocaine and amphetamine regulated transcript (CART). Of them, ABCA1 gene was reported to be highly expressed in CA1 and CA3 pyramidal neurons [Koldamova et al., 2003] and CART gene, expressed in hypothalamus neuron [Larsen et al., 2003] and may selectively regulate certain central dopamine neuronal activities [Shieh, 2003].

Cell adhesion-related genes. Genes of "cell adhesion" were significantly enriched in cluster B. These included procollagen, type VI, alpha 1; procollagen, type IV, alpha 1; procollagen, type IV, alpha 2; laminin B1 subunit 1; laminin, gamma 1; catenin delta 2; cadherin 13. Specially, mRNA level of procollagen, type IV, alpha 1 was up-regulated after differentiation day 12 (2.8-fold) and this gene previously reported as a marker of neural differentiation [Clifford et al., 1996] and a promoting factor for the differentiation of neuronal progenitors [Ali et al., 1998].

Cell cycle-related genes. The majority of "cell cycle" related genes was included in cluster D and was down-regulated during differentiation. With regard to cell cycle checkpoint transition, the expression of cyclin A2, B1, D2, and cell division cycle 2 homolog A (cdc2A) were repressed. In addition, this cluster included activator of S phase kinase; CDC28 protein kinase 1; transforming, acidic coiledcoil containing protein 3; budding uninhibited by benzimidazoles 1 homolog beta (Mm.29133); budding uninhibited by benzimidazoles 1 homo-

Fig. 2. Verification of microarray data. Real-time RT-PCR was used to verify the data from the microarray. Each value is expressed as fold change (logarithm, base 2) in mRNA levels at each differentiation time-point compared to the control NSCs, and represents the mean \pm SEM of three independent experiments. Microarray data of each gene was displayed as a horizontal strip. [Color figure can be viewed in the online issue, which is available at www.interscience.wiley.com.]

log (Mm.2185); MAD2 (mitotic arrest deficient, homolog)-like 1 and CDC28 protein kinase regulatory subunit 2.

Nucleic acid metabolism-related genes. Among genes in the cluster D with properties of decrease during differentiation, significantly frequent were also members of the category "nucleic acid metabolism"-related genes. There was a decrease in the expression of genes involved in DNA packaging, replication, repair, nucleosome assembly, and chromosome segregation, such as H2A histone family, member Z; topoisomerase II alpha; high mobility group nucleosomal binding domain 2; centromere autoantigen A; Bloom syndrome homolog; ribonucleotide reductase M2; minichromosome maintenance deficient 7; chromatin assembly factor 1; proliferating cell nuclear antigen (PCNA); high mobility group box 2 and SMC2 structural maintenance of chromosomes 2-like

1. Altered expressions of these functional genes were concomitant with the decrease in expression of G1/S cell cycle regulatory genes.

Transcription regulators. Transcription regulators which may be involved in NSCs proliferation and maintenance showed high frequency in cluster E and included transducin-like enhancer of split 4 (TLE 4); enhancer of zeste homolog 2 (EZL2); ring finger protein 3; SRY-box containing gene 4, 11 (Sox 4, 11); actin dependent regulator of chromatin, subfamily e, member 1 and Kruppel-like factor 15. Both Sox4 and 11 were previously reported to be highly expressed in ventricular zones and down-regulated in neurons as they become mature [Cheung et al., 2000].

In Vivo Expression Patterns

We performed ISH for four genes. Of them, three genes (*Fox M1, cyclin D2*, and *CDK4*) were

Ahn et al.

Fig. 3. K-means clustering of genes with expression levels that changed during NSCs differentiation. K-means clustering was used to group the 259 identified genes into clusters based on similar expression over the six time-point. These 259 genes were classified into 6 clusters (**A**–**F**).

highly expressed in the NSCs, while Enpp2 showed high expression level in differentiated cells as shown by RT-PCR. In ISH, Fox M1, cyclin D2, and CDK4 were highly expressed in the germinal zone during embryonic development. Enpp2 showed high and specific expression in the choroid plexus of brain from E13.5 to P14 (Fig. 5A,B). The choroid plexus has recently been shown to be essential organizing centers for inducing dorsal neuron fates and sustaining neuron function [Awatramani et al., 2003] and was identified as a possible location of stem/ progenitor cells [Li et al., 2002]. Moreover, lysophosphatidic acid (LPA), catalyzed by Enpp2, was shown to increase terminal mitosis of neural precursor cells and promote their cell cycle exit [Kingsbury et al., 2003].

DISCUSSION

Comparision of Two Expression Profiles

Our experiment used a comprehensive molecular approach to identify temporal changes in gene expression that occur during differentiation of NSCs. A total of 259 genes were regulated during differentiation. The 259 gene expression profiles provided us with an opportunity to compare or contrast our analysis with those of other investigators who have used similar methodologies. Karsten et al. [2003] reported a data set consisting of 318 significantly changed expression profiles in proliferating NSCs (NS) and its 24 h differentiated cells (DC) in vitro. There were 36 overlapped genes (defined as Unigene IDs) represented in both data sets (Table I). In addition, 33 of 36 overlapped genes were found to have very similar expression patterns in both systems, which suggest a good overall agreement (91.6%) between the results of these two groups. However, these genes accounted for very small proportion in total overlapped genes of our 10K chip and UCLA 9K array which had been used in Karsten et al. experiment (36/2,312 genes). There could be several reasons to explain these consequences. One major possibility is difference in the determination of significantly expressed genes in microarray data set (stringent 2-fold change cutoff method vs. false discovery rate method). Other reasons are differences in NSC population,

Fig. 4. Distribution of functionally categorized genes in each cluster. Frequencies of genes of each functional category are shown. Significantly high (**, P < 0.01; *, P < 0.05) and low ([†], P < 0.05) frequencies were evaluated by Fisher's exact test.

differentiation protocol, and microarray labeling method. Although we used NSCs derived from ES cells, Karsten et al. used neural progenitor cells which were obtained from P0 mouse.

Cell Cycle Regulation and Inhibition of Proneuronal Genes in NSC Proliferation

The clustering analysis of expression patterns of 259 genes and following statistical analysis based on functional classification revealed remarkable features of changes in gene expression during NSC differentiation. The majority of cell cycle, nucleic acid metabolism, transcription, and RNA processing related genes were overexpressed in NSCs. Notably, the up-regulation of G1-S cell cycle regulation, nucleic acid synthesis, DNA replication, packaging, and repair genes in NSCs were consistent with their self-renewal properties. These changes also indicate a progressive switch from biosynthetic Ahn et al.

Fig. 5. In situ hybridization of selected transcripts that showed altered expression level during NSCs differentiation. **A**: Sagittal and coronal sections of each age were hybridized with ³⁵S labeled antisense cRNAs. The arrows indicate germinal zone and arrowheads indicates choroid plexus at each age. **B**: Higher magnification of germinal zone (cdk4) and choroid plexus expression (Enpp2).

activity towards more functional activity in the differentiating NSCs.

A number of transcription factors required for NSCs proliferation through cell cycle regulation were suppressed as cells differentiated. A good example is Fox M1 mRNA, which activates cyclin B1 [Leung et al., 2001]. Cyclin B1 is a key regulatory component of the G2/M phase transition in the cell cycle. Germinal zone expression and cell cycle regulator activation of Fox M1 support its important role in NSCs proliferation. Another transcription factor is EZL2. Concordance with the hypothesis that retinoblastoma protein complex (pRb) may play a central role in NSC proliferation [Karsten et al., 2003], we observed a down-regulation of EZL2 at 12 and 15 day. Previous study reported that EZL2 is a downstream target of pRb-E2F pathway and essential for proliferating cells [Bracken et al., 2003]. Additionally, there were increases in mRNA of inhibitor of DNA binding (Id) 3 at differentiation day 12 and 15. Ids promote cell cycle progression by interacting with components of the cell cycle machinery and inhibit the precocious differentiation of neural progenitors into neurons and oligodendrocytes. Though Id3 is necessary for proliferating NSCs, previous study showed that Id3 may play an important role in the regulation of astrocyte proliferation [Tzeng and de Vellis, 1997]. Interestingly, only one member of cyclin family, cyclin M2, exhibited an alteration in differentiated cells and an opposite expression pattern against other cyclins. The precise role of this gene during differentiation remains to be confirmed through function-based assays.

In addition to cell cycle regulation, our analysis showed that inhibition of proneuronal genes is continued during proliferation (before terminal differentiation). TLE 4, a mammalian homologue of Drosophila groucho, was significantly down-regulated at differentiation day 15. Notch stimulation leads to activation of the expression of Enhancer of split complex [E (spl)-C] ranscripts. Their protein products then mediate the negative regulation of the expression of proneural genes. The transcriptional repressor function of E (spl)-C proteins requires the activity of the product of groucho [Grbavec et al., 1998]. Taken together, these altered expression levels strongly suggest that cell cycle regulation and negative regulation of proneuronal genes have high influences on NSC proliferation.

Up-Regulation of Neurite Outgrowth and Axon Guidance Related Genes in Differentiated Cells

A variety of extracellular cues, consisting of secreted molecules, cell-cell contact and cellextracellular matrix (ECM) interaction, are responsible for neurite outgrowth and axon guidance [Wei et al., 2002]. Genes encoding members of a number of these signaling pathways are up-regulated. Pleiotrophin, a cytokine that induce neurite outgrowth [Deuel et al., 2002], is overexpressed during differentiation and also reported to exhibit a trophic effect on survival of dopaminergic neurons [Hida et al., 2003]. Another secreted molecule, annexin A2, induce neuritogenesis and differentiation of the cell line PC12, suggesting involvement in NSC differentiation [Jacovina et al., 2001]. Ephrin B3, guidance cue molecule, was also expressed. Ephrin-Eph receptor system has been shown to mediate contact-dependent repulsion involved in axon guidance [Cook et al., 1998].

Many molecules have been isolated from the ECM and found to be very good at supporting neurite out growth. ECM proteins, such as laminins and various forms of collagens in our chip, are also up-regulated. Most growth cones, especially those in the CNS, grow along the surfaces of other cells and axons. In this function, they are supported largely by class of growth-promoting molecules that are expressed

on the cell surfaces and known as cell adhesion molecules (CAM) [Walsh and Doherty, 1997]. mRNA for activated leukocyte CAM (Alcam) in the cluster F was also up-regulated. Neurite formation requires extensive cytoskeleton remodeling. Microtubules provide structural support and act as substrate for the fast axonal transport of vesicles [Signor and Scholey, 2000]. Microtubule proteins including microtubule associated protein (MAP) 2 and MAP tau, were overexpressed.

Cellular signaling pathways that make use of CAMs, repulsive factors, attractive factors, and growth factors are received by receptors on the surface of the growth cone. Receptors that have tyrosine phosphatase activity have been found in abundance on growth cones [Holland et al., 1998]. Tyrosine phosphatase 4a3 in the cluster B was up-regulated at differentiation day 12 and 15 and tyrosine phosphatase, receptor type T in the cluster F was up-regulated at day 6.

In conclusion, we used microarray analysis during differentiation of NSCs to identify regulatory molecules. We identified 259 modulated genes, which could be divided into 14 functional groups. The further statistical analysis showed that cell cycle regulation, nucleic acid metabolism, and negative regulation of proneuronal genes play crucial roles in NSCs proliferation and its self-renewal. Also, in differentiated cells, a variety of neurite outgrowth and axon guidance related genes were detected as significantly expressed genes. Genes that we identified in this study will advance the understanding of mechanisms underlying proliferation/differentiation of NSCs and the potential for the use of stem cells as therapeutic agents.

REFERENCES

- Ali SA, Pappas IS, Parnavelas JG. 1998. Collagen type IV promotes the differentiation of neuronal progenitors and inhibits astroglial differentiation in cortical cell cultures. Brain Res Dev Brain Res 110:31–38.
- Awatramani R, Soriano P, Rodriguez C, Mai JJ, Dymecki SM. 2003. Cryptic boundaries in roof plate and choroid plexus identified by intersectional gene activation. Nat Genet 35:70–75.
- Benraiss A, Chmielnicki E, Lerner K, Roh D, Goldman SA. 2001. Adenoviral brain-derived neurotrophic factor induces both neostriatal and olfactory neuronal recruitment from endogenous progenitor cells in the adult forebrain. J Neurosci 21:6718–6731.
- Bracken AP, Pasini D, Capra M, Prosperini E, Colli E, Helin K. 2003. EZH2 is downstream of the pRB-E2F

pathway, essential for proliferation and amplified in cancer. EMBO J 22:5323-5335.

- Caldwell MA, He X, Wilkie N, Pollack S, Marshall G, Wafford KA, Svendsen CN. 2001. Growth factors regulate the survival and fate of cells derived from human neurospheres. Nat Biotechnol 19:475–479.
- Cheung M, Abu-Elmagd M, Clevers H, Scotting PJ. 2000. Roles of Sox4 in central nervous system development. Brain Res Mol Brain Res 79:180–191.
- Clifford J, Chiba H, Sobieszczuk D, Metzger D, Chambon P. 1996. RXRalpha-null F9 embryonal carcinoma cells are resistant to the differentiation, anti-proliferative and apoptotic effects of retinoids. EMBO J 15:4142–4155.
- Cook G, Tannahill D, Keynes R. 1998. Axon guidance to and from choice points. Curr Opin Neurobiol 8:64–72.
- Deuel TF, Zhang N, Yeh HJ, Silos-Santiago I, Wang ZY. 2002. Pleiotrophin: A cytokine with diverse functions and a novel signaling pathway. Arch Biochem Biophys 397:162–171.
- Geschwind DH, Ou J, Easterday MC, Dougherty JD, Jackson RL, Chen Z, Antoine H, Terskikh A, Weissman IL, Nelson SF, Kornblum HI. 2001. A genetic analysis of neural progenitor differentiation. Neuron 29:325– 339.
- Grbavec D, Lo R, Liu Y, Stifani S. 1998. Transducin-like Enhancer of split 2, a mammalian homologue of *Drosophila groucho*, acts as a transcriptional repressor, interacts with Hairy/Enhancer of split proteins, and is expressed during neuronal development. Eur J Biochem 258:339-349.
- Hida H, Jung CG, Wu CZ, Kim HJ, Kodama Y, Masuda T, Nishino H. 2003. Pleiotrophin exhibits a trophic effect on survival of dopaminergic neurons in vitro. Eur J Neurosci 17:2127–2134.
- Holland SJ, Peles E, Pawson T, Schlessinger J. 1998. Cellcontact-dependent signalling in axon growth and guidance: Eph receptor tyrosine kinases and receptor protein tyrosine phosphatase beta. Curr Opin Neurobiol 8:117-127.
- Jacovina AT, Zhong F, Khazanova E, Lev E, Deora AB, Hajjar KA. 2001. Neuritogenesis and the nerve growth factor-induced differentiation of PC-12 cells require annexin II-mediated plasmin generation. J Biol Chem 276:49350-49358.
- Karsten SL, Kudo LC, Jackson R, Sabatti C, Kornblum HI, Geschwind DH. 2003. Global analysis of gene expression in neural progenitors reveals specific cell-cycle, signaling, and metabolic networks. Dev Biol 261:165–182.
- Kingsbury MA, Rehen SK, Contos JJ, Higgins CM, Chun J. 2003. Non-proliferative effects of lysophosphatidic acid enhance cortical growth and folding. Nat Neurosci 6:1292–1299.
- Koldamova RP, Lefterov IM, Ikonomovic MD, Skoko J, Lefterov PI, Isanski BA, DeKosky ST, Lazo JS. 2003. 22R-hydroxycholesterol and 9-cis-retinoic acid induce ATP-binding cassette transporter A1 expression and cholesterol efflux in brain cells and decrease amyloid beta secretion. J Biol Chem 278:13244–13256.

- Larsen PJ, Seier V, Fink-Jensen A, Holst JJ, Warberg J, Vrang N. 2003. Cocaine- and amphetamine-regulated transcript is present in hypothalamic neuroendocrine neurones and is released to the hypothalamic-pituitary portal circuit. J Neuroendocrinol 15:219–226.
- Lee SH, Lumelsky N, Studer L, Auerbach JM, McKay RD. 2000. Efficient generation of midbrain and hindbrain neurons from mouse embryonic stem cell. Nat Biotechnol 18:675–679.
- Lee KH, Chang MY, Ahn JI, Yu DH, Jung SS, Choi JH, Noh YH, Lee YS, Ahn MJ. 2002. Differential gene expression in retinoic acid-induced differentiation of acute promyelocytic leukemia cells, NB4 and HL-60 cells. Biochem Biophys Res Commun 296:1125–1133.
- Leung TW, Lin SS, Tsang AC, Tong CS, Ching JC, Leung WY, Gimlich R, Wong GG, Yao KM. 2001. Overexpression of FoxM1 stimulates cyclin B1 expression. FEBS Lett 507:59–66.
- Li Y, Chen J, Chopp M. 2002. Cell proliferation and differentiation from ependymal, subependymal and choroid plexus cells in response to stroke in rats. J Neurol Sci 193:137–146.
- Luo Y, Cai J, Liu Y, Xue H, Chrest FJ, Wersto RP, Rao M. 2002. Microarray analysis of selected genes in neural stem and progenitor cells. J Neurochem 83:1481–1497.
- McKay RD. 1997. Stem cells in the central nervous system. Science 276:66–71.
- Morrison SJ. 2001. Neuronal potential and lineage determination by neural stem cells. Curr Opin Cell Biol 13:666-672.
- Ross SE, Greenberg ME, Stiles CD. 2003. Basic helix-loophelix factors in cortical development. Neuron 39:13–25.
- Shieh KR. 2003. Effects of the cocaine- and amphetamineregulated transcript peptide on the turnover of central dopaminergic neurons. Neuropharmacology 44:940–948.
- Signor D, Scholey JM. 2000. Microtubule-based transport along axons, dendrites and axonemes. Essays Biochem 35:89–102.
- Sturn A, Quackenbush J, Trajanoski Z. 2002. Genesis: Cluster analysis of microarray data. Bioinformatics 18:207-208.
- Tzeng SF, de Vellis J. 1997. Expression and functional role of the Id HLH family in cultured astrocytes. Brain Res Mol Brain Res 46:136–142.
- Vescovi AL, Reynolds BA, Fraser DD, Weiss S. 1993. bFGF regulates the proliferative fate of unipotent (neuronal) and bipotent (neuronal/astroglial) EGF-generated CNS progenitor cells. Neuron 11:951–966.
- Walsh FS, Doherty P. 1997. Neural cell adhesion molecules of the immunoglobulin superfamily: Role in axon growth and guidance. Annu Rev Cell Dev Biol 13:425–456.
- Wei Y, Harris T, Childs G. 2002. Global gene expression patterns during neural differentiation of P19 embryonic carcinoma cells. Differentiation 70:204–219.
- Zigova T, Pencea V, Wiegand SJ, Luskin MB. 1998. Intraventricular administration of BDNF increases the number of newly generated neurons in the adult olfactory bulb. Mol Cell Neurosci 11:234–245.